Abstract
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Information and Communication Technologies (ICTs) affect the environment in various ways. Their energy
consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of information, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodically deleting data and records should reduce the consumption of electricity for data storage. As a consequence, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity consumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Archiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organizations. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different formats, it will lower costs and it reduces the potential for
liability.
consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing environmental awareness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard- and software dimensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of information, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodically deleting data and records should reduce the consumption of electricity for data storage. As a consequence, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity consumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Archiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organizations. This paper is the result of the first stage of a research project that is aimed at developing low power ICTs that will automatically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity consumption used for data storage. At the same time, data disposal will reduce overload caused by storing the same data in different formats, it will lower costs and it reduces the potential for
liability.
Original language | English |
---|---|
Title of host publication | Leading Issues in ICT Evaluation Research |
Subtitle of host publication | for Researchers, Teachers and Students |
Editors | Shaun Pather |
Place of Publication | Reading |
Publisher | ACPI |
Chapter | 10 |
Pages | 200-220 |
Number of pages | 21 |
Volume | 2 |
ISBN (Print) | 9781911218241 |
Publication status | Published - 7 Feb 2017 |
Publication series
Name | Leading Issues |
---|