TY - JOUR
T1 - Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector
AU - Korba, Peter
AU - Balli, Ozgur
AU - Caliskan, Hakan
AU - Al-Rabeei, Samer
AU - Kale, Utku
PY - 2023/4/15
Y1 - 2023/4/15
N2 - In this study, aviation, energy, exergy, environmental, exergoeconomic, and exergoenvironmental analyses are performed on a CFM56-3 series high by-pass turbofan engine fueled with Jet-A1 fuel. Specific fuel consumption and specific thrust of the engine are found to be 0.01098 kg/kN.s and 0.3178 kN/kg/s, respectively. Engine's energy efficiency is calculated as 35.37%, while waste energy ratio is obtained as 64.63%. Exergy efficiency, waste exergy rate, and fuel exergy waste ratio are forecasted as 33.32%, 33175.03 kW, and 66.68%, respectively. Environmental effect factor and ecological effect factor are computed as 2.001 and 3.001, while ecological objective function and its index are taken into account of −16597.22 kW and −1.001, respectively. Exergetic sustainability index and sustainable efficiency factor are determined as 0.5 and 1.5 for the CFM56-3 engine, respectively. Environmental damage cost rate is determined as 519.753 $/h, while the environmental damage cost index is accounted as 0.0314 $/kWh. Specific exergy cost of the engine production is found as 40.898 $/GJ from exergoeconomic analysis, while specific product exergy cost is expressed as 49.607 $/GJ from exergoenvironmental analysis. From exergoenvironmental economic analysis, specific exergy cost of fuel is computed as 10.103 $/GJ when specific exergy cost of production is determined as 40.898 $/GJ.
AB - In this study, aviation, energy, exergy, environmental, exergoeconomic, and exergoenvironmental analyses are performed on a CFM56-3 series high by-pass turbofan engine fueled with Jet-A1 fuel. Specific fuel consumption and specific thrust of the engine are found to be 0.01098 kg/kN.s and 0.3178 kN/kg/s, respectively. Engine's energy efficiency is calculated as 35.37%, while waste energy ratio is obtained as 64.63%. Exergy efficiency, waste exergy rate, and fuel exergy waste ratio are forecasted as 33.32%, 33175.03 kW, and 66.68%, respectively. Environmental effect factor and ecological effect factor are computed as 2.001 and 3.001, while ecological objective function and its index are taken into account of −16597.22 kW and −1.001, respectively. Exergetic sustainability index and sustainable efficiency factor are determined as 0.5 and 1.5 for the CFM56-3 engine, respectively. Environmental damage cost rate is determined as 519.753 $/h, while the environmental damage cost index is accounted as 0.0314 $/kWh. Specific exergy cost of the engine production is found as 40.898 $/GJ from exergoeconomic analysis, while specific product exergy cost is expressed as 49.607 $/GJ from exergoenvironmental analysis. From exergoenvironmental economic analysis, specific exergy cost of fuel is computed as 10.103 $/GJ when specific exergy cost of production is determined as 40.898 $/GJ.
KW - Efficiency
KW - Environmental analysis
KW - Exergy
KW - Thermoeconomic analysis
KW - Transportation
KW - Turbofan engine
U2 - 10.1016/j.energy.2023.126765
DO - 10.1016/j.energy.2023.126765
M3 - Article
AN - SCOPUS:85147124911
SN - 0360-5442
VL - 269
SP - 1
EP - 10
JO - Energy
JF - Energy
M1 - 126765
ER -