Abstract
Social networks and news outlets use recommender systems to distribute information and suggest news to their users. These algorithms are an attractive solution to deal with the massive amount of content on the web [6]. However, some organisations prioritise retention and maximisation of the number of access, which can be incompatible with values like the diversity of content and transparency. In recent years critics have warned of the dangers of algorithmic curation. The term filter bubbles, coined by the internet activist Eli Pariser [1], describes the outcome of pre-selected personalisation, where users are trapped in a bubble of similar contents. Pariser warns that it is not the user but the algorithm that curates and selects interesting topics to watch or read. Still, there is disagreement about the consequences for individuals and society. Research on the existence of filter bubbles is inconclusive. Fletcher in [5], claims that the term filter bubbles is an oversimplification of a much more complex system involving cognitive processes and social and technological interactions. And most of the empirical studies indicate that algorithmic recommendations have not locked large segments of the audience into bubbles [3] [6]. We built an agent-based simulation tool to study the dynamic and complex interplay between individual choices and social and technological interaction. The model includes different recommendation algorithms and a range of cognitive filters that can simulate different social network dynamics. The cognitive filters are based on the triple-filter bubble model [2]. The tool can be used to understand under which circumstances algorithmic filtering and social network dynamics affect users' innate opinions and which interventions on recommender systems can mitigate adverse side effects like the presence of filter bubbles. The resulting tool is an open-source interactive web interface, allowing the simulation with different parameters such as users' characteristics, social networks and recommender system settings (see Fig. 1). The ABM model, implemented in Python Mesa [4], allows users to visualise, compare and analyse the consequence of combining various factors. Experiment results are similar to the ones published in the Triple Filter Bubble paper [2]. The novelty is the option to use a real collaborative-filter recommendation system and a new metric to measure the distance between users' innate and final opinions. We observed that slight modifications in the recommendation system, exposing items within the boundaries of users' latitude of acceptance, could increase content diversity.
References
1. Pariser, E.: The filter bubble: What the internet is hiding from you. Penguin, New York, NY (2011)
2. Geschke, D., Lorenz, J., Holtz, P.: The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology (2019), 58, 129–149
3. Möller, J., Trilling, D., Helberger, N. , and van Es, B.: Do Not Blame It on the Algorithm: An Empirical Assessment of Multiple Recommender Systems and Their Impact on Content Diversity. Information, Communication and Society 21, no. 7 (2018): 959–77
4. Mesa: Agent-based modeling in Python, https://mesa.readthedocs.io/. Last accessed 2 Sep 2022
5. Fletcher, R.: The truth behind filter bubbles: Bursting some myths. Digital News Report - Reuters Institute (2020). https://reutersinstitute.politics.ox.ac.uk/news/truth-behind-filter-bubblesbursting-some-myths. Last accessed 2 Sep 2022
6. Haim, M., Graefe, A, Brosius, H: Burst of the Filter Bubble?: Effects of Personalization on the Diversity of Google News. Digital Journalism 6, no. 3 (2018): 330–43.
References
1. Pariser, E.: The filter bubble: What the internet is hiding from you. Penguin, New York, NY (2011)
2. Geschke, D., Lorenz, J., Holtz, P.: The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology (2019), 58, 129–149
3. Möller, J., Trilling, D., Helberger, N. , and van Es, B.: Do Not Blame It on the Algorithm: An Empirical Assessment of Multiple Recommender Systems and Their Impact on Content Diversity. Information, Communication and Society 21, no. 7 (2018): 959–77
4. Mesa: Agent-based modeling in Python, https://mesa.readthedocs.io/. Last accessed 2 Sep 2022
5. Fletcher, R.: The truth behind filter bubbles: Bursting some myths. Digital News Report - Reuters Institute (2020). https://reutersinstitute.politics.ox.ac.uk/news/truth-behind-filter-bubblesbursting-some-myths. Last accessed 2 Sep 2022
6. Haim, M., Graefe, A, Brosius, H: Burst of the Filter Bubble?: Effects of Personalization on the Diversity of Google News. Digital Journalism 6, no. 3 (2018): 330–43.
Original language | English |
---|---|
Pages | 1-3 |
Number of pages | 3 |
Publication status | Published - 7 Nov 2022 |
Event | BNAIC/BeNeLearn 2022 - Mechelen, Belgium Duration: 7 Nov 2022 → 9 Nov 2022 |
Conference
Conference | BNAIC/BeNeLearn 2022 |
---|---|
Country/Territory | Belgium |
City | Mechelen |
Period | 7/11/22 → 9/11/22 |