Abstract
This investigation is undertaken based on the indicated improvements for fabric simulations, defined during the panel discussion “Driving the Uniformity of Material Measurements for Accurate Virtual Simulation” at the Product Innovation Apparel Conference (PI Apparel) in Berlin 2017, by experts from industry and academia. According to the expert panel, there is no coherency between methods used to measure the fabric properties and the simulated results of the same fabric among the different software packages. In praxis, fashion brands use different 3D software packages and need to measure a fabric with different methods to obtain the same fabric properties. In addition to the time investment, the simulated results for the same fabric vary significantly between the different software packages. The experts indicated the lack of standardization in material measurements, the lack of correlation between the data of the different measurement systems, and the lack of correlation between the simulated results of the different software packages for the same material. The contributions of the panel were followed up during the next edition of PI Apparel in the United States and resulted in the 3D Retail Coalition (RC) innovation committee to work on the indicated areas to improve the efficiency of material measurements. Moreover, this topic was further discussed during the PI Apparel Conference at Lago Maggiore in 2019 within the panel discussion "How Can We Collectively Achieve the Standardisation of Fabric Measurements for Digital Materials?"
This paper investigates, on the one hand, the suitability of the current available measurement technologies for retrieving fabric parameters for precise virtual fabric and garment simulations. The focus is on the main properties required by the software packages—bending, shear, tensile and friction—aiming to identify and specify the most suitable methods to retrieve mechanical fabric properties and to start a standardization process for fabric measurements for virtual simulations.
Seven fabric measurement methods and their output data are reviewed, namely the Kawabata Evaluation System (KES), the Fabric Assurance by Simple Testing (FAST), the Fabric Touch Tester (FTT), the CLO Fabric Kit 2.0, the Fabric Analyser by Browzwear (FAB), the Optitex Mark 10, and the cantilever principle. A set of fabrics with different mechanical behavior and physical drape has been tested with the FAB method. Other measurement methods have been discussed with expert users. In addition, fabrics have been tested with ZwickRoell’s (ZwickRoell) measuring systems applying various standard measurement methods, developed for similar materials. This publication will give for each property an overview of the different measurement methods, as well as recommendations based on their accuracy. Further, a SWOT analysis is provided. The outcome of this research can be used to pave the foundation for further work on the standardization of the fabric measurement.
This paper investigates, on the one hand, the suitability of the current available measurement technologies for retrieving fabric parameters for precise virtual fabric and garment simulations. The focus is on the main properties required by the software packages—bending, shear, tensile and friction—aiming to identify and specify the most suitable methods to retrieve mechanical fabric properties and to start a standardization process for fabric measurements for virtual simulations.
Seven fabric measurement methods and their output data are reviewed, namely the Kawabata Evaluation System (KES), the Fabric Assurance by Simple Testing (FAST), the Fabric Touch Tester (FTT), the CLO Fabric Kit 2.0, the Fabric Analyser by Browzwear (FAB), the Optitex Mark 10, and the cantilever principle. A set of fabrics with different mechanical behavior and physical drape has been tested with the FAB method. Other measurement methods have been discussed with expert users. In addition, fabrics have been tested with ZwickRoell’s (ZwickRoell) measuring systems applying various standard measurement methods, developed for similar materials. This publication will give for each property an overview of the different measurement methods, as well as recommendations based on their accuracy. Further, a SWOT analysis is provided. The outcome of this research can be used to pave the foundation for further work on the standardization of the fabric measurement.
Original language | English |
---|---|
Place of Publication | New York |
Publisher | Institute of Electrical and Electronics Engineers (IEEE), Inc |
Number of pages | 42 |
ISBN (Print) | 9781504464970 |
Publication status | Published - 25 Feb 2020 |
Publication series
Name | IEEE Industry Connections (IEEE-IC) |
---|